Копилки для энергетики

Международное энергетическое агентство прогнозирует рост глобальной доли возобновляемой энергетики в общей выработке энергии до 28% к 2021 году. Одновременно будут развиваться технологии, способные решить главную проблему «зелёной» энергетики – неравномерность выработки электроэнергии. Специалисты уверены, что индустрию хранения энергии ожидает бурный рост уже в ближайшем будущем.

Копилки для энергетики

Солнечная электростанция эффективно работает только в светлое время дня и при безоблачном небе, а ветряк – когда дует ветер, и эти провалы в выработке нужно как-то компенсировать. Например, накапливать часть вырабатываемой энергии при помощи промышленных аккумуляторов, а расходовать её во время вечерних и утренних пиков потребления.

Хранилища энергии пригодятся и в случае аварий в энергосистемах. Как отмечает глава учебного центра АББ в РФ Максим Рябчицкий, сегодня объёмы выработки и потребления электричества сбалансированы и электростанции подстраиваются под график потребителя. Но в случае внезапных отключений в энергосистеме, по масштабам сопоставимой с российской, ситуацию спасёт аккумулятор мощностью от 10–20 МВт, способный 1,5–2 часа закрывать энергодефицит.

При поддержке государства

По мнению главы «Роснано» Анатолия Чубайса, доля ВИЭ в общем объёме генерации к 2050 году составит 40% мирового энергобаланса, а хранение электроэнергии станет коммерчески состоявшейся технологией, в результате чего «мы придём к другой электроэнергетике».

«Мировая и российская электроэнергетика находится в одном шаге от преобразования базового технологического принципа – соответствия уровня генерации и потребления в единый момент времени. Прорывная технология, которая позволит разделить генерацию и потребление, – накопление энергии. Эта технология полностью изменит всю систему диспетчеризации, соотношение традиционной и альтернативной электроэнергетики и многое другое. Если к технологии накопления энергии добавить хорошую IT-логику, то это будет, бесспорно, революция», – считает Чубайс.

Есть понимание проблемы и на государственном уровне. В начале этого года вице-премьер Аркадий Дворкович поручил Минэнерго и «Роснано» разработать техзадание на создание госпрограммы поддержки кластера промышленного хранения электроэнергии (power storage). Участники совещания с вице-премьером также сочли, что промышленное хранение электроэнергии находится в стартовой точке бума, который затронет изолированные, малые электрические хозяйства и транспорт.

В «Роснано» считают, что господдержка позволит сформировать на рынке пул национальных игроков. Стимулировать спрос на накопители планируется за счёт компенсации рисков инвестпроектов и повышения их инвестпривлекательности. Использование промышленных аккумуляторов позволит создавать экономически эффективные локальные энергосистемы, сгладить пики потребления и создавать рынки торговли электроэнергией для распределённой энергетики, отмечают в компании.

Электрохимия и жизнь

В настоящее время придумано много способов хранения электроэнергии в больших масштабах, однако приоритет отдаётся строительству обычных электрохимических аккумуляторов размером с дом.

Совокупная мощность работающих и строящихся промышленных хранилищ энергии в мире, по данным консалтинговой компании IHS, составляет около 3 ГВт. Однако аналитики уверены, что индустрию хранения энергии ожидает бурный рост уже в ближайшем будущем.

Основные проблемы опытных промышленных накопителей – дороговизна и низкая ёмкость, массовой экономически оправданной технологии их сооружения пока нет (особняком тут стоит технология Tesla, о которой ниже). По словам Максима Рябчицкого, исследования, которые велись последние 20 лет, создали много образцов (вплоть до самых экзотических) power storage, но они пока не ушли дальше опытно-промышленной эксплуатации, а существующие аккумуляторы слишком дороги и имеют низкий КПД. То есть пока аккумуляторы дороже самих СЭС.

Директор Ассоциации предприятий солнечной энергетики Антон Усачёв прогнозирует, что при росте доли ВИЭ в энергобалансе будет расти потребность в ёмких системах power storage, наибольший спрос будет в странах, планирующих долю ВИЭ в генерации не менее 25–30%.

Мощность используемых сегодня в мире решений power storage, как правило, не выше 1–2 МВт. Так, итальянская Enel запустила осенью 2015 года в Катании первое хранилище электроэнергии при солнечной станции на 10 МВт с ёмкостью батарей 2 МВт•ч и планирует ВЭС на 18 МВт на юге Италии с литийионными батареями также в 2 МВт•ч.

Крупнейший в Европе промышленный накопитель энергии появился в немецкой деревне Фельдхайм. Предприятие официально называется Региональной регулирующей электростанцией. Назначение станции мощностью 10 МВт и ёмкостью аккумуляторов 10,8 МВт•ч – накапливать избыточную электроэнергию, вырабатываемую ВИЭ, обеспечивать стабильность электросети, сглаживать временные изменения частоты.

Ряд компаний (RWE, Vionx, LG, SMA, Bosch, JLM Energy, Varta) начали поставлять на рынок промышленные и бытовые системы хранения энергии, которые также работают на основе разновидностей литийионных аккумуляторов, в первую очередь литий-железо-фосфатных (LiFePO4), а также ванадиевых батарей. Дальше других продвинулась Япония с технологией горячих аккумуляторов. В этом ряду нельзя не отметить наработки компании Tesla, которая и здесь впереди планеты всей, не в последнюю очередь благодаря грамотному пиару своей продукции, отличному дизайну, продвинутым технологическим решениям и «агрессивной» цене.

В прошлом году Илон Маск презентовал проект Powerwall – настенную литийионную батарею для дома ёмкостью 10 КВт•ч (это примерно дюжина стандартных автомобильных аккумуляторов). Батареи достаточно для покрытия суточной потребности в электроэнергии средней американской семьи. Стоит она $3500. Интересно, что разработка Tesla позволяет наращивать систему до девяти штук, присоединяя к ней дополнительные единицы Powerwall.

Однако по-настоящему промышленным аккумулятором, скорее всего, станет другая разработка Tesla – аккумулятор Powerpack. С виду и по размерам он похож на холодильник и имеет ёмкость в десять раз большую, чем Powerwall – 100 КВт•ч. Powerpack также является модулем. Добавляя такие модули в хранилище, можно наращивать ёмкость последнего практически до бесконечности. По словам Илона Маска, в США уже есть энергетические компании, работающие на основе технологии Powerpack и имеющие хранилища ёмкостью 250 МВт•ч.

По расчётам компании PwC, хранение и распределение электроэнергии по сети в объёме 5 тысяч МВт•ч может быть экономически выгодным в США при стоимости с учётом монтажа на уровне $350 за 1 кВт•ч. Цена за пункт ёмкости при использовании модулей Powerpack равна $250.

Альтернативное накопительство

Альтернативой электрохимическим промышленным аккумуляторам может стать строительство объектов «зелёной» энергетики рядом с ГАЭС – гидроаккумулирующими станциями, запасающими энергию в виде воды. Изначальное предназначение ГАЭС – выравнивать неоднородность суточного графика электрической нагрузки. С развитием ВИЭ гидроаккумулирующие станции смогут также нивелировать дискретность выработки энергии СЭС и ветряками.

По данным Департамента энергетики США, в мире в настоящее время работает 292 гидроаккумулирующих комплекса общей мощностью 142 ГВт. Ещё 46 станций общей мощностью 34 ГВт строятся. КПД современных ГАЭС составляет 70–75%.

«Среди всех технологий хранения энергии гидроаккумулирующие комплексы являются самыми надёжными, опробованными и коммерчески выгодными аккумуляторами», – считает сотрудник департамента энергии Национальной лаборатории в Аргонне (штат Иллинойс) Владимир Коритаров. По его мнению, 98% действующих хранилищ энергии в мире и есть ГАЭС. Сегодня ГАЭС вновь в центре внимания, и не в последнюю очередь в связи с бумом ВИЭ, говорит Коритаров.

В Испании, например, где порядка 20% энергии вырабатывается ветром, хранилища ГАЭС гидроузла Cortes-La Muela наполняются ВЭС в ветреные ночи, а когда ветер утихает или потребность в энергии возрастает, вода из верхнего резервуара используется для вращения турбин и выработки энергии. Это самый большой в Европе комплекс такого рода мощностью 1762 МВт, способный обеспечивать энергией 500 000 домов.

В США на стадии планирования находится проект ГАЭС JD Pool в штате Вашингтон мощностью 1200 МВт. Пара его верхних резервуаров будет размещена между рядами ветровых турбин на плато Колумбия. Общая мощность 47 ветровых электростанций, находящихся в штатах Вашингтон и Орегон в непосредственной близости от предполагаемого места строительства ГАЭС, составляет 4695 МВт. Этого достаточно, чтобы не только снабжать электроэнергией ближайшие предприятия и домохозяйства, но и заполнять водой резервуары JD Pool.

А вот в совмещении СЭС и ГАЭС сегодня есть определённые сложности. Как правило, крупные солнечные электростанции размещены в жарких пустынных местностях, где наблюдаются проблемы с водой. Хотя при наличии полноводных подземных горизонтов и эта проблема решаема. Вот только воды из-под земли придётся выкачивать много, ведь ГАЭС – сооружение, размер которого имеет значение.

Фантазия без тормозов

Когда есть заказ и подразумевается бюджет, мозги учёных начинают работать с удвоенной силой. Поиски альтернативных химическим аккумуляторам способов хранения энергии идут в лабораториях всего мира, порождая подчас весьма экзотические проекты.

Британский Департамент энергии и изменения климата проинвестировал разработку хранилища энергии, в котором работает сжиженный воздух. Установка получила название LAES и развивает мощность 350 КВт•ч. Её испытания прошли успешно, и проект имеет перспективы по масштабированию.

Работает установка следующим образом. При наличии избыточной электроэнергии воздух сжижается в ёмкости высотой 12 м, а диаметром – 3 м. А когда нужно, снова превращается в ток.

В местности Техачапи (штат Калифорния, США) действует другой необычный экспериментальный накопитель, запасающий энергию при помощи гравитации. Называется он ARES и с виду похож на детскую железную дорогу (ширина колеи – всего 381 мм). Когда ветер дует, вагончик, приводимый в движение электромотором, едет по ветке в гору, накапливая энергию, а когда стихает – устройство скатывается вниз. В этот момент его двигатель работает как генератор, подавая энергию в сеть.

Горка находится рядом с парком ветрогенераторов. Вес экспериментальной тележки – 5670 кг. Один из плюсов проекта – более низкая стоимость жизненного цикла по сравнению с батареями. При этом эффективность системы составляет 86%.

В дальнейшем в соседней Неваде, где по причине отсутствия воды нельзя соорудить ту же ГАЭС, планируется построить систему с объёмом запасаемой энергии 12,5 МВт•ч. Это будет однопутная дорога длиной 8 км и уклоном 6,6 градусов. Двигаться по ней будут 17 сцепок: по два локомотива массой по 220 тонн и два вагона с бетонными блоками массой по 150 тонн каждый.


Источники: ИТАР-ТАСС, газета «Коммерсантъ», сайты renewableenergyworld.com, digitalsubstation.ru, tesla.com/powerwall, resilience.org, alternativenergy.ru



28 октября 2016 в 13:31

хранение энергии, энергохранилища, накопление энергии, накопители энергии, гидроаккумулирующие станции, солнечная батарея, солнечные батареи, энергетика, электроэнергия, альтернативные источники энергии

Другие пользователи читают

Регионам оставят только «вилку»

В ближайшее время правительство направит в Государственную думу законопроект, вносящий изменения в федеральный закон...

08 декабря 2017 в 21:12
Модернизации дали добро

14 ноября на совещании у президента России Владимира Путина состоялась длительная отраслевая дискуссия о дальнейших ...

14 ноября 2017 в 21:54
Прямоточное водоснабжение упёрлось в деньги

Минэнерго подготовило поправки в Водный Кодекс, снимающие запрет на строительство ТЭС и АЭС с прямоточными системам водо...

27 ноября 2017 в 21:52
«Хевел» пустил солнце в оборот

Компания «Хевел» достаточно неожиданно продала три солнечные электростанции (СЭС) мощностью 35 МВт, построенные в Башкирии...

30 ноября 2017 в 19:47