Копилки для энергетики

Международное энергетическое агентство прогнозирует рост глобальной доли возобновляемой энергетики в общей выработке энергии до 28% к 2021 году. Одновременно будут развиваться технологии, способные решить главную проблему «зелёной» энергетики – неравномерность выработки электроэнергии. Специалисты уверены, что индустрию хранения энергии ожидает бурный рост уже в ближайшем будущем.

Копилки для энергетики

Солнечная электростанция эффективно работает только в светлое время дня и при безоблачном небе, а ветряк – когда дует ветер, и эти провалы в выработке нужно как-то компенсировать. Например, накапливать часть вырабатываемой энергии при помощи промышленных аккумуляторов, а расходовать её во время вечерних и утренних пиков потребления.

Хранилища энергии пригодятся и в случае аварий в энергосистемах. Как отмечает глава учебного центра АББ в РФ Максим Рябчицкий, сегодня объёмы выработки и потребления электричества сбалансированы и электростанции подстраиваются под график потребителя. Но в случае внезапных отключений в энергосистеме, по масштабам сопоставимой с российской, ситуацию спасёт аккумулятор мощностью от 10–20 МВт, способный 1,5–2 часа закрывать энергодефицит.

При поддержке государства

По мнению главы «Роснано» Анатолия Чубайса, доля ВИЭ в общем объёме генерации к 2050 году составит 40% мирового энергобаланса, а хранение электроэнергии станет коммерчески состоявшейся технологией, в результате чего «мы придём к другой электроэнергетике».

«Мировая и российская электроэнергетика находится в одном шаге от преобразования базового технологического принципа – соответствия уровня генерации и потребления в единый момент времени. Прорывная технология, которая позволит разделить генерацию и потребление, – накопление энергии. Эта технология полностью изменит всю систему диспетчеризации, соотношение традиционной и альтернативной электроэнергетики и многое другое. Если к технологии накопления энергии добавить хорошую IT-логику, то это будет, бесспорно, революция», – считает Чубайс.

Есть понимание проблемы и на государственном уровне. В начале этого года вице-премьер Аркадий Дворкович поручил Минэнерго и «Роснано» разработать техзадание на создание госпрограммы поддержки кластера промышленного хранения электроэнергии (power storage). Участники совещания с вице-премьером также сочли, что промышленное хранение электроэнергии находится в стартовой точке бума, который затронет изолированные, малые электрические хозяйства и транспорт.

В «Роснано» считают, что господдержка позволит сформировать на рынке пул национальных игроков. Стимулировать спрос на накопители планируется за счёт компенсации рисков инвестпроектов и повышения их инвестпривлекательности. Использование промышленных аккумуляторов позволит создавать экономически эффективные локальные энергосистемы, сгладить пики потребления и создавать рынки торговли электроэнергией для распределённой энергетики, отмечают в компании.

Электрохимия и жизнь

В настоящее время придумано много способов хранения электроэнергии в больших масштабах, однако приоритет отдаётся строительству обычных электрохимических аккумуляторов размером с дом.

Совокупная мощность работающих и строящихся промышленных хранилищ энергии в мире, по данным консалтинговой компании IHS, составляет около 3 ГВт. Однако аналитики уверены, что индустрию хранения энергии ожидает бурный рост уже в ближайшем будущем.

Основные проблемы опытных промышленных накопителей – дороговизна и низкая ёмкость, массовой экономически оправданной технологии их сооружения пока нет (особняком тут стоит технология Tesla, о которой ниже). По словам Максима Рябчицкого, исследования, которые велись последние 20 лет, создали много образцов (вплоть до самых экзотических) power storage, но они пока не ушли дальше опытно-промышленной эксплуатации, а существующие аккумуляторы слишком дороги и имеют низкий КПД. То есть пока аккумуляторы дороже самих СЭС.

Директор Ассоциации предприятий солнечной энергетики Антон Усачёв прогнозирует, что при росте доли ВИЭ в энергобалансе будет расти потребность в ёмких системах power storage, наибольший спрос будет в странах, планирующих долю ВИЭ в генерации не менее 25–30%.

Мощность используемых сегодня в мире решений power storage, как правило, не выше 1–2 МВт. Так, итальянская Enel запустила осенью 2015 года в Катании первое хранилище электроэнергии при солнечной станции на 10 МВт с ёмкостью батарей 2 МВт•ч и планирует ВЭС на 18 МВт на юге Италии с литийионными батареями также в 2 МВт•ч.

Крупнейший в Европе промышленный накопитель энергии появился в немецкой деревне Фельдхайм. Предприятие официально называется Региональной регулирующей электростанцией. Назначение станции мощностью 10 МВт и ёмкостью аккумуляторов 10,8 МВт•ч – накапливать избыточную электроэнергию, вырабатываемую ВИЭ, обеспечивать стабильность электросети, сглаживать временные изменения частоты.

Ряд компаний (RWE, Vionx, LG, SMA, Bosch, JLM Energy, Varta) начали поставлять на рынок промышленные и бытовые системы хранения энергии, которые также работают на основе разновидностей литийионных аккумуляторов, в первую очередь литий-железо-фосфатных (LiFePO4), а также ванадиевых батарей. Дальше других продвинулась Япония с технологией горячих аккумуляторов. В этом ряду нельзя не отметить наработки компании Tesla, которая и здесь впереди планеты всей, не в последнюю очередь благодаря грамотному пиару своей продукции, отличному дизайну, продвинутым технологическим решениям и «агрессивной» цене.

В прошлом году Илон Маск презентовал проект Powerwall – настенную литийионную батарею для дома ёмкостью 10 КВт•ч (это примерно дюжина стандартных автомобильных аккумуляторов). Батареи достаточно для покрытия суточной потребности в электроэнергии средней американской семьи. Стоит она $3500. Интересно, что разработка Tesla позволяет наращивать систему до девяти штук, присоединяя к ней дополнительные единицы Powerwall.

Однако по-настоящему промышленным аккумулятором, скорее всего, станет другая разработка Tesla – аккумулятор Powerpack. С виду и по размерам он похож на холодильник и имеет ёмкость в десять раз большую, чем Powerwall – 100 КВт•ч. Powerpack также является модулем. Добавляя такие модули в хранилище, можно наращивать ёмкость последнего практически до бесконечности. По словам Илона Маска, в США уже есть энергетические компании, работающие на основе технологии Powerpack и имеющие хранилища ёмкостью 250 МВт•ч.

По расчётам компании PwC, хранение и распределение электроэнергии по сети в объёме 5 тысяч МВт•ч может быть экономически выгодным в США при стоимости с учётом монтажа на уровне $350 за 1 кВт•ч. Цена за пункт ёмкости при использовании модулей Powerpack равна $250.

Альтернативное накопительство

Альтернативой электрохимическим промышленным аккумуляторам может стать строительство объектов «зелёной» энергетики рядом с ГАЭС – гидроаккумулирующими станциями, запасающими энергию в виде воды. Изначальное предназначение ГАЭС – выравнивать неоднородность суточного графика электрической нагрузки. С развитием ВИЭ гидроаккумулирующие станции смогут также нивелировать дискретность выработки энергии СЭС и ветряками.

По данным Департамента энергетики США, в мире в настоящее время работает 292 гидроаккумулирующих комплекса общей мощностью 142 ГВт. Ещё 46 станций общей мощностью 34 ГВт строятся. КПД современных ГАЭС составляет 70–75%.

«Среди всех технологий хранения энергии гидроаккумулирующие комплексы являются самыми надёжными, опробованными и коммерчески выгодными аккумуляторами», – считает сотрудник департамента энергии Национальной лаборатории в Аргонне (штат Иллинойс) Владимир Коритаров. По его мнению, 98% действующих хранилищ энергии в мире и есть ГАЭС. Сегодня ГАЭС вновь в центре внимания, и не в последнюю очередь в связи с бумом ВИЭ, говорит Коритаров.

В Испании, например, где порядка 20% энергии вырабатывается ветром, хранилища ГАЭС гидроузла Cortes-La Muela наполняются ВЭС в ветреные ночи, а когда ветер утихает или потребность в энергии возрастает, вода из верхнего резервуара используется для вращения турбин и выработки энергии. Это самый большой в Европе комплекс такого рода мощностью 1762 МВт, способный обеспечивать энергией 500 000 домов.

В США на стадии планирования находится проект ГАЭС JD Pool в штате Вашингтон мощностью 1200 МВт. Пара его верхних резервуаров будет размещена между рядами ветровых турбин на плато Колумбия. Общая мощность 47 ветровых электростанций, находящихся в штатах Вашингтон и Орегон в непосредственной близости от предполагаемого места строительства ГАЭС, составляет 4695 МВт. Этого достаточно, чтобы не только снабжать электроэнергией ближайшие предприятия и домохозяйства, но и заполнять водой резервуары JD Pool.

А вот в совмещении СЭС и ГАЭС сегодня есть определённые сложности. Как правило, крупные солнечные электростанции размещены в жарких пустынных местностях, где наблюдаются проблемы с водой. Хотя при наличии полноводных подземных горизонтов и эта проблема решаема. Вот только воды из-под земли придётся выкачивать много, ведь ГАЭС – сооружение, размер которого имеет значение.

Фантазия без тормозов

Когда есть заказ и подразумевается бюджет, мозги учёных начинают работать с удвоенной силой. Поиски альтернативных химическим аккумуляторам способов хранения энергии идут в лабораториях всего мира, порождая подчас весьма экзотические проекты.

Британский Департамент энергии и изменения климата проинвестировал разработку хранилища энергии, в котором работает сжиженный воздух. Установка получила название LAES и развивает мощность 350 КВт•ч. Её испытания прошли успешно, и проект имеет перспективы по масштабированию.

Работает установка следующим образом. При наличии избыточной электроэнергии воздух сжижается в ёмкости высотой 12 м, а диаметром – 3 м. А когда нужно, снова превращается в ток.

В местности Техачапи (штат Калифорния, США) действует другой необычный экспериментальный накопитель, запасающий энергию при помощи гравитации. Называется он ARES и с виду похож на детскую железную дорогу (ширина колеи – всего 381 мм). Когда ветер дует, вагончик, приводимый в движение электромотором, едет по ветке в гору, накапливая энергию, а когда стихает – устройство скатывается вниз. В этот момент его двигатель работает как генератор, подавая энергию в сеть.

Горка находится рядом с парком ветрогенераторов. Вес экспериментальной тележки – 5670 кг. Один из плюсов проекта – более низкая стоимость жизненного цикла по сравнению с батареями. При этом эффективность системы составляет 86%.

В дальнейшем в соседней Неваде, где по причине отсутствия воды нельзя соорудить ту же ГАЭС, планируется построить систему с объёмом запасаемой энергии 12,5 МВт•ч. Это будет однопутная дорога длиной 8 км и уклоном 6,6 градусов. Двигаться по ней будут 17 сцепок: по два локомотива массой по 220 тонн и два вагона с бетонными блоками массой по 150 тонн каждый.


Источники: ИТАР-ТАСС, газета «Коммерсантъ», сайты renewableenergyworld.com, digitalsubstation.ru, tesla.com/powerwall, resilience.org, alternativenergy.ru



28 октября 2016 в 13:31

хранение энергии, энергохранилища, накопление энергии, накопители энергии, гидроаккумулирующие станции, солнечная батарея, солнечные батареи, энергетика, электроэнергия, альтернативные источники энергии

Другие пользователи читают

Уценённый ДПМ от старения

Впервые озвученный лишь неделю назад вариант модернизации российской энергетики молниеносно превратился в фактически...

Вчера в 20:42
Мусорный компромисс

Власти практически определились с механизмом дальнейшего финансирования программы строительства мусоросжигательных заводов...

05 октября 2017 в 21:07
Антисанкционный манёвр во благо «Россетей»

Правительство России консолидирует электросетевой комплекс Крыма на базе создаваемого АО «Крымэнерго» и готово отдать в ...

22 сентября 2017 в 17:33
ДПМ без ручки

Основные игроки рынка альтернативной генерации, в том числе «Роснано», ратуют за сохранение механизма господдержки в её ...

10 октября 2017 в 20:45