Космическая энергетика

Сегодня Россия отмечает День космонавтики, а весь остальной мир – Международный день полёта человека в космос. 55 лет назад, 12 апреля 1961 года Юрий Алексеевич Гагарин стал первым человеком, покорившим космическое пространство.

Космическая энергетика

    

  Любой космический полёт – с участием или без участия человека – не был бы возможен без решения проблемы автономных систем энергоснабжения. 
Идея применять солнечные батареи в космосе впервые появилась больше полувека назад, во время первых запусков искусственных спутников Земли. В тот период в СССР профессор Николай Степанович Лидоренко обосновал необходимость применения бесконечных источников энергии на космических аппаратах.  

  Первый искусственный спутник Земли (1957 год) обладал энергоустановкой мощностью порядка 40 Вт, тогда как аппарат «Молния-1+» (1967 год) обладал установкой мощностью уже 460 Вт. Для сравнения: солнечные батареи, установленные на Международной космической станции (МКС), позволяют вырабатывать от 84 до 120 кВт электрической мощности. В настоящее время все космические станции функционируют исключительно за счёт солнечной энергии. 

  Солнечная энергетика МКС 

 Мощность излучения Солнца на орбите Земли составляет 1367 Вт/м². Это позволяет получать примерно 130 Вт на 1 м² поверхности солнечных батарей (при КПД 8–13%). Солнечные батареи располагают или на внешней поверхности аппарата или на раскрывающихся жёстких панелях.

 Электростанция орбитальной станции должна обладать чрезвычайно высокой надёжностью при длительном сроке непрерывной работы, она должна быть полностью автоматизирована и иметь относительно небольшой вес. Кроме того, источник энергии на борту должен быть высокоэкономичным и не реагировать на специфические факторы космического полёта (невесомость, радиацию, метеорную опасность и т. п.).  

 При этом в российском и американском сегментах МКС мощность электросети разнится. В отечественной части МКС электричество вырабатывается солнечными батареями модулей «Заря» и «Звезда», а также может передаваться от американского сегмента через преобразователь напряжения.

 В американском сегменте две гибкие складные панели солнечных батарей образуют так называемое крыло солнечной батареи, всего на станции размещено четыре пары таких крыльев. Каждое крыло имеет длину 35 м и ширину 11,6 м, а его полезная площадь составляет 298 м², при этом вырабатываемая им суммарная мощность может достигать 32,8 кВт. Солнечные батареи генерируют первичное постоянное напряжение от 115 до 173 В, которое затем трансформируется во вторичное стабилизированное постоянное напряжение в 124 В.  Энергия аккумулируется в специальных никель-водородных батареях – от них станция питается, когда находится в тени Земли. 

 Предлагаем вам ознакомиться с инфографикой об энергоснабжении МКС на «Перетоке»: http://peretok.ru/multimedia/infographics/elektrostantsiya-dlya-kosmonavtov.html. 

  1 кВт на человека

   Основные потребители тока на орбитальных космических станциях – это научно-исследовательское и специальное техническое оборудование, система обеспечения жизнедеятельности экипажа, радиоаппаратура связи с Землёй или какими-либо космическими объектами, а также различные вспомогательные установки, например, для управления ориентацией станции, для коррекции и изменения её орбиты. 

  Суммарная мощность бортовых электростанций на большинстве искусственных спутников США колеблется от 0,3 до 150 Вт. Однако здесь нужно заметить, что оборудование большинства спутников довольно невелико по объёму ввиду малого веса полезной нагрузки их ракет-носителей. Значительно выше мощность энергоустановки на обитаемых космических кораблях. Например, средняя мощность, потребная для орбитального полёта американской пилотируемой капсулы «Меркурий», составляет около 260 Вт, максимальная потребляемая мощность – не более 1 кВт.
 
 Для орбитальной космической станции потребная мощность источника энергии составляет от 0,8–1 кВт для небольшой станции с экипажем из одного-двух человек до 50–100 кВт для крупной орбитальной лаборатории.  
 
 Обычно приборы, проектируемые специально для использования в космосе, потребляют относительно небольшие мощности. Так, например, устанавливаемый на некоторых американских спутниках Земли детектор космического излучения потребляет 2 Вт, магнитометр – 5 Вт, счётчик микрометеоров – 2,5 Вт, масс-спектрограф – 17 Вт, аппаратура активного ретранслятора радиосигналов – 10 Вт и т. д. По-разному экспертами оценивается мощность, необходимая для поддержания условий жизнедеятельности экипажа на борту. Обычно называют цифры от 500 Вт до 1 кВт на человека.  

  Новые технические горизонты

 Среди аккумуляторных батарей для космических аппаратов сегодня широко используются никель-водородные аккумуляторы. Однако энергомассовые характеристики этих аккумуляторов достигли своего максимума (70–80 Вт∙ч/кг). Дальнейшее их улучшение очень ограниченно и, кроме того, требует больших финансовых затрат.

 В связи с этим в настоящее время на рынке космической техники происходит активное внедрение литийионных аккумуляторов (ЛИА). 

 Характеристики литийионных батарей гораздо выше по сравнению с аккумуляторами других типов при аналогичном сроке службы и количестве циклов заряда-разряда. Удельная энергия литийионных аккумуляторов может достигать 130 и более Вт∙ч/кг, а коэффициент полезного действия по энергии – 95%.

 Немаловажным фактом является и то, что ЛИА одного типоразмера способны безопасно работать при их параллельном соединении в группы, таким образом, несложно формировать литийионные аккумуляторные батареи различной ёмкости.  Одним из главных отличий ЛИА от никель-водородных батарей является наличие электронных блоков автоматики, которые контролируют и управляют процессом заряда-разряда. Они также отвечают за нивелирование разбаланса напряжений единичных ЛИА и обеспечивают сбор и подготовку телеметрической информации об основных параметрах батареи.

  Но всё же основным преимуществом литийионных аккумуляторов считается снижение массы по сравнению с традиционными батареями. По оценкам специалистов, применение литийионных аккумуляторов на телекоммуникационных спутниках мощностью 15–20 кВт позволит снизить массу батарей на 300 кг. Учитывая то, что стоимость вывода на орбиту 1 кг полезной массы составляет около 30 тысяч долларов, это позволит значительно снизить финансовые затраты.

 Одним из ведущих российских разработчиков подобных аккумуляторных батарей для космических аппаратов является ОАО «Авиационная электроника и коммуникационные системы» (АВЭКС), входящее в КРЭТ. Технологичный процесс изготовления литийионных аккумуляторов на предприятии позволяет обеспечить высокую надёжность и снижение себестоимости.  

  Кстати, россияне не отстают и в плане производства фотоэлектрических преобразователей – полупроводниковых устройств, преобразующих солнечную энергию в постоянный электрический ток. Проще говоря, это основные элементы устройств, которые мы называем солнечными батареями. Делают такие батареи в Краснодаре, на заводе «Сатурн». Предприятие в Краснодаре входит в структуру Федерального космического агентства, но владеет «Сатурном» компания «Очаково», которая в буквальном смысле спасла это производство в 1990-е годы. Владельцы «Очаково» выкупили контрольный пакет акций, который чуть было не ушёл к американцам. Сегодня «Сатурн» – один из двух лидеров на российском рынке производства солнечных и аккумуляторных батарей для нужд космической отрасли (гражданской и военной).


Автор: Леонид Хомерики

12 апреля 2016 в 12:57

день космонавтики, солнечная энергетика, инновации, солнечная батарея, солнечные батареи, энергетика, солнечная панель, солнечные электростанции, солнечная энергия, источники энергии

Другие пользователи читают

Скованные виртуальной цепью

На протяжении нескольких лет подряд блокчейн-стартапы, разрабатывающие технические решения для новой энергетики, в том ч...

31 октября 2017 в 17:54